THE EFFECT OF FORMULATION

AND MANUFACTURING PROCESSES

ON THE CHARACTERISTICS OF

DIRECT COMPRESSION TABLETS

by

IAN MARTIN SANDERSON, B.Pharm. (Hons.), M.P.S.

Thesis submitted to

THE UNIVERSITY OF NOTTINGHAM

for the degree of

DOCTOR OF PHILOSOPHY

October, 1986.

Contents

		Page Number
Abstract	t.	vii
Acknowle	edgements.	ix
List of	Figures and Plates.	Х
List of	Tables.	XV
CHAPTER	l Introduction.	1
1.1	An Overview.	2
1.2	Tablet Manufacturing.	4
1.3	Tablet Strength.	9
1.4	Friability.	11
1.5	Porosity.	11
1.6	Weight Variation.	14
1.7	Liquid Penetration.	18
1.8	Disintegration.	21
1.9	Dissolution.	24
1.9.	l Dissolution from a Surface.	25
1.9.2	2 Dissolution of Powders.	28
1.9.3	B Dissolution from a Tablet.	29
1.9.4	4 Dissolution Methods.	34
1.10	Statistical Methods in Formulation.	40
1.10	.l Optimisation Methods.	40
l.ll Ain	ns and Objectives.	47
CHAPTER	2 Materials, Apparatus, Methods and	
	Preliminary Investigations.	48
2.1	Introduction.	49
2.2	Material Preparation.	49
2.3	Paracetamol Particle Sizing Methods.	
2.3.	l Initial Methods.	56
2.3.2	2 Microscopic Methods.	58
2.3.3	B Fisher Subsieve Sizing.	60
2.3.4	A Laser Diffraction.	61

		Page	Number
2.4	Preliminary formulation work.		61
2.5	Tablet Manufacture.		63
2.5.	l Mixing.		63
2.5.	2 Tabletting.		66
2.5.	3 Tablet Tests.		69
2.6	Dissolution Tests.		74
2.6.	l Dissolution Apparatus.		74
2.6.	2 Calibration of the Kontron dissolution	ı	
	system.		75
2.6.	3 Dissolution Methods.		82
2.7	The determination of suitable mixing		
	times and disintegrant concentrations.		85
2.8	Friability and Liquid Penetration tests	•	88
2.9	Conclusions from the preliminary		
	formulations.		91
CHAPTER	3 Results.		93
3.1	Introduction.		94
3.2	The Particle Size of Paracetamol.		94
3.3	The Particle Size of Aspirin.		98
3.4	Tablet manufacture and testing.		99
CHAPTER	4 The Statistical Analysis of the Resu	lts	
	Derived from Paracetamol Tablets.	1	43
4.1	Introduction.	1	44
4.2	Statistical Analysis of the Treatments		
	Relating to the Tablet Weight Variation		
	of Paracetamol Tablets.	1	47
4.3	Statistical Analysis of the Treatments		
	Relating to the Porosity of		
	Paracetamol Tablets	1	5.2

4.4	Statistical Analysis of the Treatments	
	Relating to the Tensile Fracture Stress	
	of Paracetamol Tablets.	159
4.5	Statistical Analysis of the Treatments	
	Relating to the Friability of Paracetamol	
	Tablets.	166
4.6	Statistical Analysis of the Treatments	
	Relating to the Uptake of Liquid by	
	Paracetamol Tablets.	168
4.7	Statistical Analysis of the Treatments	
	Relating to the Dissolution of Paracetamol	
	from Tablets.	178
4.8	The Relationship Between Tensile Fracture	
	Stress and T90% in Paracetamol Tablets.	188
4.9	A Summary of the effects of the treatments	
	on the characteristics of paracetamol	
	tablets.	191
4.9.	l The Effect of a Longer Mixing Time	191
	2 The Effect of Increasing the Drug	
	Particle Size.	192
4.9.3	3 The Effect of Increasing the Starch	
	Concentration.	196
4.9.	4 The Effect of Increasing the Compaction	
	Pressure.	198

CHAPTER	5 The Statistical Analysis of the Results Derived from Aspirin Tablets.	202
5.1 5.2	Introduction. The Analysis of Variance based on the Coefficient of Weight Variation of	203
	Aspirin Tablets.	204
5.3	The Analysis of Variance based on the Porosity of Aspirin Tablets.	206
5.4	The Analysis of Variance based on the Tensile Fracture Stress of Aspirin Tablets.	209
5.5	The Analysis of Variance based on the Friability of Aspirin Tablets.	215
5.6	The Analysis of Variance based on the Liquid Uptake into Aspirin Tablets.	220
5.7	Statistical Analysis of the Treatments Relating to the Dissolution of Aspirin Tablets.	227
5.8	A Summary of the effects of the	
	Treatments on Aspirin Tablets.	239
5.8.1	The effect of altering the mixing time	239
5.8.2	The effect of changing the starch	
	concentration.	240
5.8.3	The effect of changing the compaction	
	pressure.	241

CHAP ¹	TER 6 A Comparison of the Characteristics of Aspirin and Paracetamol Tablets.	243
6.1	Introduction.	244
6.2	Tablet Weight Variation and Porosity.	247
6.3	Tablet Strength.	250
6.4	Liquid Penetration.	253
6.5	The Dissolution Rate.	255
6.6	Conclusions.	258
6.7	Further Work.	261
	6.7.1 General Considerations.	261
	6.7.2 Detailed Considerations.	262
	Bibliography.	267
	Appendix.	281

ABSTRACT

Two model direct compression tablet formulations have examined by means of factorially designed experiments. The formulations were based on a direct compression vehicle (Avicel) containing 25%w/w either paracetamol or aspirin. A disintegrant (maize starch), a lubricant (magnesium stearate) glidant (Aerosil) were also included. The influence of changes in mixing time and compaction pressure were used to represent changes in the manufacturing process. Alterations to the starch concentration and the drug particle size were chosen to reflect formulation changes. The coefficient of weight variation, porosity, tensile fracture stress, friability, the time for 50% liquid saturation of the tablets, and 90% of dissolution were used to monitor the effects of the changes.

The lubricant distribution, as determined by the mixing time, was found to control the tablet strength to a greater extent than the other factors. With the paracetamol formulations, where the particle size was similar to the bulk of the excipients, the particle size also had an appreciable effect on the tablet strength. The compaction pressure was the least effective factor.

A novel method of measuring liquid uptake into tablets based on gamma scintigraphy showed that the penetration into aspirin tablets was largely determined by the tablet strength. The uptake into paracetamol tablets was controlled by the drug particle size and the mixing time.

Increasing the starch concentration increased the dissolution rate, but this has been postulated to be due to an interaction of the starch with the drug surface rather than any disintegrant action. The drug particle size had a significant effect on the dissolution of the paracetamol tablets where the larger size dissolved more rapidly. There was little effect on the aspirin tablets where the drug size was greater than that of the other excipients.

ACKNOWLEDGEMENTS.

This work would not have been possible without the support and encouragment of Dr. J. W. Kennerley and Dr. G. D. Parr, to whom I would like to express my thanks.

Any experimental work requires the maintenance of equipment, the procurement of apparatus and space to carry out those experiments. To this end I would also like to express my thanks to the technical staff of the Pharmacy Department at Nottingham University, not forgetting those concerned with the administration.

A large proportion of this project has been concerned with the statistical analysis of results and I would like to thank Mr. P. Riley for his invaluable advice on experimental design and analysis. Thanks also to the other members of staff in Cripps Computing Centre at Nottingham University.

The finance provided by the S.E.R.C. in conjunction with E. R. Squibb and Sons Ltd. made the project feasible.

Finally I would like to thank Ann for smoothing out the rough patches.

List of Figures and Plates

Figure	Number Pag	e Numbe
1.1	The Processes Involved in the Delivery of a	
	Drug to its Site of Biological Activity.	3
1.2	Two commonly available designs of drum	
	used in friability tests.	12
1.3	The processes involved in the conversion of	
	a drug contained in a tablet to a solution	
	available for absorption.	24
1.4	Diagramatic representation of three models	
	describing the dissolution of a solid from	
	a surface.	27
1.5	The effect of the compaction pressure on	
	the dissolution of a drug from a tablet.	35
1.6	The common designs of apparatus for	
	in-vitro dissolution testing.	37
1.7	The Test Conditions for Evolutionary	
	Operation.	43
2.1	The principal components of an Alpine	
	Zig-Zag Classifier.	53
2.2	Photomicrograph of the undersize cut of	
	paracetamol obtained from a Zig-zag	
	classifier.	59
2.3	Photomicrograph of the oversize cut of	
	paracetamol obtaied from a Zig-zag	
	classifier.	59
2.4	Diagrammatic cross sections of the mixers	
	used during formulation development.	64
2.5	Detail of the Modified Hobart mixer used	
	in the production of the experimental	
	tablets.	65
2.6	Detail of the upper punch and load washer	
	assembly.	67

Figure	Number	Page	Number
2.7	Flow diagram of the Fortran program us	ed	
	to process tabletting data.		72
2.8	Schematic diagram of the Kontron		
	dissolution apparatus.		76
2.9	Beer calibration plot for paracetamol	in	
	$0.1M$ HCl at 37° C and 270 nm.		78
2.10	The change in absorbance with time at		
	different wavelengths due to acid		
	hydrolysis of aspirin.		80
2.11	Beer calibration plot for aspirin in		
	0.1M HCl at 37 ^O C and 278nm		81
2.12	Flow diagram of the Fortran computer		
	program used to process dissolution da	ta.	8 4
2.13	The relationship between the tensile		
	fracture stress and the mixing time in		
	preformulation studies.		86
2.14	Schematic diagram of the equipment use	d	
	in liquid uptake studies.		90
3.1	The particle size distribution of two	size	
	fractions of paracetamol based on micr	oscop	oic
	and laser scatter determinations.		97
Plate		-	
3.1	An example of the visual record obtai		• •
	during the liquid uptake studies.	1	.09

Figure	Number	Page Number
3.2	The mean dissolution profiles from	
J • Z	paracetamol tablets batches 1 to 3.	111
3.3		111
J.J	The mean dissolution profiles from	112
2 4	paracetamol tablets batches 4 to 6.	112
3.4	The mean dissolution profiles from	110
2 5	paracetamol tablets batches 7 to 9.	113
3.5	The mean dissolution profiles from	7.7.4
2 6	paracetamol tablets batches 10 to 12.	114
3.6	The mean dissolution profiles from	115
2 7	paracetamol tablets batches 13 to 15.	115
3.7	The mean dissolution profiles from	1.1.6
	paracetamol tablets batches 16 to 18.	116
3.8	The mean dissolution profiles from	
	paracetamol tablets batches 19 to 21.	117
3.9	The mean dissolution profiles from	
	paracetamol tablets batches 22 to 24.	118
3.10	The mean dissolution profiles from	
	aspirin tablets batches 1 to 3.	119
3.11	The mean dissolution profiles from	
	aspirin tablets batches 4 to 6.	120
3.12	The mean dissolution profiles from	
	aspirin tablets batches 7 to 9.	121
3.13	The mean dissolution profiles from	
	aspirin tablets batches 10 to 12.	122
3.14	The mean dissolution profiles from	
	aspirin tablets batches 13 to 15.	123
3.15	The mean dissolution profiles from	
	aspirin tablets batches 16 to 18.	124
3.16	The mean dissolution profiles from	
	aspirin tablets batches 19 to 21.	125

Figure	Number	Page Number
3.17	The mean dissolution profiles from	
	aspirin tablets batches 22 to 24.	126
3.18	The liquid uptake profiles from	
	paracetamol tablets batches 1 to 3.	127
3.19	The liquid uptake profiles from	
	paracetamol tablets batches 4 to 6.	128
3.20	The liquid uptake profiles from	
	paracetamol tablets batches 7 to 9.	129
3.21	The liquid uptake profiles from	
	paracetamol tablets batches 10 to 12.	130
3.22	The liquid uptake profiles from	
	paracetamol tablets batches 13 to 15.	131
3.23	The liquid uptake profiles from	
	paracetamol tablets batches 16 to 18.	132
3.24	The liquid uptake profiles from	
	paracetamol tablets batches 19 to 21.	133
3.25	The liquid uptake profiles from	
	paracetamol tablets batches 22 to 24.	134
3.26	The liquid uptake profiles from	
	aspirin tablets batches 1 to 3.	135
3.27	The liquid uptake profiles from	
	aspirin tablets batches 4 to 6.	136
3.28	The liquid uptake profiles from	
	aspirin tablets batches 7 to 9.	137
3.29	The liquid uptake profiles from	
	aspirin tablets batches 10 to 12.	138
3.30	The liquid uptake profiles from	
	aspirin tablets batches 13 to 15.	139
3.31	The liquid uptake profiles from	
	aspirin tablets batches 16 to 18.	140

Figure	Number	Page Number
3.32	The liquid uptake profiles from	
	aspirin tablets batches 19 to 21.	141
3.33	The liquid uptake profiles from	
	aspirin tablets batches 22 to 24.	142
4.1	The influence of hydrophobic inclusion	ns
	on the penetration of liquid into a	
	hydrophilic tablet matrix.	173
4.2	Scatter diagram of the mean T90% for	
	each batch of paracetamol tablets and	
	the associated mean tensile fracture	
	stress.	190
5.1	Scatter diagram of the mean liquid upt	cake
	(M50%) and the mean tensile fracture s	stress
	for each batch of aspirin tablets.	224
6.1	The relationship between the mean tens	sile
	fracture stress and the reciprocal of	the
	percentage friability for aspirin and	
	paracetamol tablets.	251

List of Tables

Table	Number Page	e Numbe
1.1	A Comparison of the Methods of Preparing	
	Drugs for Tabletting.	6
1.2	General Characteristics of Common	
	Direct Compression Excipients.	8
1.3	Powder Measurements. Factors relating to	
	powder flow.	16
1.4	The adhesion tension of various materials.	. 20
1.5	Proposed mechanisms for the action of	
	Disintegrants.	22
1.6	Dissolution models.	30
1.7	The change in particle surface with size	
	reduction.	32
1.8	Some examples of factorial design	
	experiments.	46
2.1	Apparatus and Suppliers.	50
2.2	Materials and Suppliers.	52
2.3	The Apparent Particle Densities of the	
	powders used.	55
2.4	Calibration of the Kontron Dissolution	
	system with Paracetamol at 270nm.	77
2.5	The formulation used in mixing	
	experiments.	85
2.6	Formulations used for disintegration	
	tests.	87
2.7	The change in disintegration time with	
	starch concentration.	88
3.1	The increase in surface-volume diameter	
	of two size fractions of paracetamol with	
	decreasing porosity on a Fisher sub-sieve	
	sizer.	95

3.2	Mean surface-volume diameters determined	
	by Fisher sub-sieve sizer at a porosity	
	of 0.6.	95
3.3	The geometric mean diameter and standard	
	deviation of two size fractions of	
	paracetamol powder determined by	
	different methods.	96
3.4	The Manufacturing Parameters Used in the	
	Production of Batches of Paracetamol and	
	Aspirin Tablets.	100
3.5	The experimental formulations used for	
	the manufacture of aspirin and	
	paracetamol tablets.	101
3.6	Assay figures for paracetamol tablets	
	and target weight for mixes.	102
3.7	A Summary of the Experimental Results	
	Relating to Paracetamol Tablets.	103
3.8	A Summary of the Experimental Results	
	Relating to Aspirin Tablets.	104
3.9	The linear regression analysis of the	
	relationship between tensile fracture	
	stress and compaction pressure for	
	paracetamol tablets.	106
3.10	The linear regression analysis of the	
	relationship between tensile fracture	
	stress and compaction pressure for	
	paracetamol tablets.	107

Table Number

4.4b	The mean tensile fracture stress	
	attributable to the drug particle size.	161
4.4c	The mean tensile fracture stress	
	attributable to the starch	
	concentration.	161
4.4d	The mean tensile fracture stress	
	attributable to the compaction	
	pressure.	162
4.4e	The mean tensile fracture stress	
	attributable to the interaction between	
	the drug particle size, mixing time and	
	compaction pressure.	162
4.5	ANOVA table based on the Friability	
	of paracetamol tablets.	167
4.6	ANOVA table based on the liquid	
	uptake into paracetamol tablets.	170
4.6a	The mean liquid uptake attributable	
	to the mixing time.	171
4.6b	The mean liquid uptake attributable	
	to the drug particle size.	171
4.6c	The mean liquid uptake attributable	
	to the compaction pressure.	171
4.6d	The mean liquid uptake attributable	
	to the interaction between mixing time	
	and drug particle size.	172
4.6e	The mean liquid uptake attributable	
	to the interaction between mixing time,	
	drug particle size and compaction	
	pressure.	172
4.7	ANOVA table based on the time for	
	90% of the drug to dissolve from	
	paracetamol tablets.	179

Table Number

Page Number

4.7a	The mean T90% attributable to the	
	starch concentration.	180
4.7b	The mean T90% attributable to the drug	
	particle size.	180
4.7c	The mean T90% attributable to the	
	interaction between the drug particle	
	size and starch concentration.	181
4.7d	The mean T90% attributable to the	
	interaction between starch concentration,	
	mixing time and drug particle size.	181
4.8	ANOVA table based on the time for	
	50% of the drug to dissolve from	
	paracetamol tablets.	182
4.9	ANOVA table based on the time for	
	60% of the drug to dissolve from	
	paracetamol tablets.	183
4.10	The Theoretical Ratio of Surface Areas	
	of Paracetamol and Starch.	187
5.1	ANOVA table based on the coefficient	
J•1	of weight variation of aspirin tablets.	205
5.2	ANOVA table based on the porosity of	203
J • Z	aspirin tablets.	207
5.2a	The mean tablet porosity attributable	207
J. 2a	to the compaction pressure.	208
5.2b	The mean tablet porosity attributable	200
J • ZD	to the mixing time.	208
5.3	ANOVA table based on the tensile	200
3.3		210
E 2-	fracture stress of aspirin tablets.	210
5.3a	The mean tensile fracture stress	יור
	attributable to the mixing time.	211

Table Number

Table	Number	Page Number
5.3b	The mean tensile fracture stress	
3.32	attributable to the starch	
	concentration.	211
5.3c	The mean tensile fracture stress	211
3.30	attributable to the compaction	
	pressure.	212
5.3d	The mean tensile fracture stress	2 1 2
	attributable to the interaction between	een
	the starch concentration and the	
	mixing time.	212
5.4	ANOVA table based on the friability	
	of aspirin tablets.	216
5.4a	The mean friability attributable to	
	the mixing time.	217
5.4b	The mean friability attributable to	
	the starch concentration.	217
5.4c	The mean friability attributable to	
	the compaction pressure.	217
5.4d	The mean friability attributable to	
	the interaction between mixing time	
	and starch concentration.	218
5.4e	The mean friability attributable to	
	the interaction between mixing time	
	and compaction pressure.	218
5.5	ANOVA table based on the liquid	
	uptake into aspirin tablets.	221
5.5a	The mean liquid uptake attributable	
	to the mixing time.	222
5.5b	The mean liquid uptake attributable	
	to the starch concentration.	222

5.5c	The mean liquid uptake attributable to	
	the interaction between mixing time	
	and starch concentration.	222
5.5d	The mean liquid uptake attributable	
	to the compaction pressure.	223
5.5e	The mean liquid uptake attributable	
	to the interaction between starch	
	concentration, mixing time and	
	compaction pressure.	223
5.6	ANOVA table based on the time for	
	90% of the drug to dissolve from	
	aspirin tablets.	228
5.6a	The mean T90% attributable to the	
	starch concentration.	229
5.6b	The mean T90% attributable to the	
	mixing time.	229
5.6c	The mean T90% attributable to the	
	compaction pressure.	229
5.6d	The mean T90% attributable to the	
	interaction between mixing time and	
	starch concentration.	230
5.6e	The mean T90% attributable to the	
	interaction between the starch	
	concentration and compaction pressure.	230
5.6f	The mean T90% attributable to the	
	interaction between mixing time and	
	compaction pressure.	230

Table Number

Table 1	Number Pa	ge Number
5.6g	The mean T90% attributable to the interaction between starch	
	concentration, mixing time and	
	compaction pressure.	231
5.7	ANOVA table based on the time for	
	50% of the drug to dissolve from	
	aspirin tablets.	232
5.8	ANOVA table based on the time for	
	60% of the drug to dissolve from	
	aspirin tablets.	233
	·	
6.1	A summary of the effect of an increase	
	in a treatment on the tablet parameters.	245
6.2	The properties of aspirin and	
	paracetamol.	246
A.1	Measurements derived from the manufactur	е
	of paracetamol tablets: batch 1.	Al
A.2	Measurements derived from the manufacture	е
	of paracetamol tablets: batch 2.	Al
A.3	Measurements derived from the manufacture	е
	of paracetamol tablets: batch 3.	A2
A.4	Measurements derived from the manufacture	е
	of paracetamol tablets: batch 4.	A2
A.5	Measurements derived from the manufacture	е
	of paracetamol tablets: batch 5.	А3
A.6	Measurements derived from the manufacture	е
	of paracetamol tablets: batch 6.	А3
A.7	Measurements derived from the manufacture	е
	of paracetamol tablets: batch 7.	A4
A.8	Measurements derived from the manufacture	e
	of paracetamol tablets: batch 8.	A4

A.9	Measurements derived	from the	manufacture	
	of paracetamol table	ts: batch	9.	Α5
A.10	Measurements derived	from the	manufacture	
	of paracetamol table	ts: batch	10.	Α5
A.11	Measurements derived	from the	manufacture	
	of paracetamol table	ts: batch	11.	Α6
A.12	Measurements derived	from the	manufacture	
	of paracetamol table	ts: batch	12.	A6
A.13	Measurements derived	from the	manufacture	
	of paracetamol table	ts: batch	13.	A7
A.14	Measurements derived	from the	manufacture	
	of paracetamol table	ts: batch	14.	A7
A.15	Measurements derived	from the	manufacture	
	of paracetamol table	ts: batch	15.	A8
A.16	Measurements derived	from the	manufacture	
	of paracetamol table	ts: batch	16.	A8
A.17	Measurements derived	from the	manufacture	
	of paracetamol table	ts: batch	17.	Α9
A.18	Measurements derived	from the	manufacture	
	of paracetamol table	ts: batch	18.	Α9
A.19	Measurements derived	from the	manufacture	
	of paracetamol table	ts: batch	19.	A10
A.20	Measurements derived	from the	manufacture	
	of paracetamol table	ts: batch	20.	A10
A.21	Measurements derived	from the	manufacture	
	of paracetamol table	ts: batch	21.	All
A.22	Measurements derived	from the	manufacture	
	of paracetamol table	ts: batch	22.	A11
A.23	Measurements derived	from the	manufacture	
	of paracetamol table	ts: batch	23.	A12

A.24	${\tt Measurements} \ {\tt derived} \ {\tt from} \ {\tt the} \ {\tt manufacture}$	
	of paracetamol tablets: batch 24.	A12
A.25	$\label{thm:measurements} \mbox{Measurements derived from the manufacture}$	
	of aspirin tablets: batch 1.	A13
A.26	$\label{thm:measurements} \mbox{ Measurements derived from the manufacture}$	
	of aspirin tablets: batch 2.	A13
A.27	$\label{thm:measurements} \mbox{ Measurements derived from the manufacture}$	
	of aspirin tablets: batch 3.	A14
A.28	$\label{thm:measurements} \mbox{ Measurements derived from the manufacture}$	
	of aspirin tablets: batch 4.	A14
A.29	$\label{thm:measurements} \mbox{ Measurements derived from the manufacture}$	
	of aspirin tablets: batch 5.	A15
A.30	$\label{thm:measurements} \mbox{ Measurements derived from the manufacture}$	
	of aspirin tablets: batch 6.	A15
A.31	$\label{thm:measurements} \mbox{ Measurements derived from the manufacture}$	
	of aspirin tablets: batch 7.	A16
A.32	$\label{thm:measurements} \mbox{ Measurements derived from the manufacture}$	
	of aspirin tablets: batch 8.	A16
A.33	$\label{thm:measurements} \mbox{ Measurements derived from the manufacture}$	
	of aspirin tablets: batch 9.	A17
A.34	$\label{thm:measurements} \mbox{ Measurements derived from the manufacture}$	
	of aspirin tablets: batch 10.	A17
A.35	$\label{thm:measurements} \mbox{ Measurements derived from the manufacture}$	
	of aspirin tablets: batch 11.	A18
A.36	$\label{thm:measurements} \mbox{ Measurements derived from the manufacture}$	
	of aspirin tablets: batch 12.	A18
A.37	$\label{thm:measurements} \mbox{Measurements derived from the manufacture}$	
	of aspirin tablets: batch 13.	A19
A.38	$\label{thm:measurements} \mbox{Measurements derived from the manufacture}$	
	of aspirin tablets: batch 14.	A19

A.39	Measurements derived from the manufacture	
	of aspirin tablets: batch 15.	A20
A.40	Measurements derived from the manufacture	
	of aspirin tablets: batch 16.	A20
A.41	Measurements derived from the manufacture	
	of aspirin tablets: batch 17.	A21
A.42	Measurements derived from the manufacture	
	of aspirin tablets: batch 18.	A21
A.43	Measurements derived from the manufacture	
	of aspirin tablets: batch 19.	A22
A.44	Measurements derived from the manufacture	
	of aspirin tablets: batch 20.	A22
A.45	Measurements derived from the manufacture	
	of aspirin tablets: batch 21.	A23
A.46	Measurements derived from the manufacture	
	of aspirin tablets: batch 22.	A23
A.47	Measurements derived from the manufacture	
	of aspirin tablets: batch 23.	A24
A.48	Measurements derived from the manufacture	
	of aspirin tablets: batch 24.	A24